THE DIAGRAMS PRESENTED IN THIS BOOKLET ARE TO DEMONSTRATE A SUGGESTED METHOD OF ASSEMBLY ONLY. SPACING DIMENSIONS AND FOOTING ANCHORS MAY VARY DEPENDING ON POUR RATES AND DEFLECTION SPEC. THE DIAGRAMS SHOULD NOT LIMIT NOR RESTRICT IDEAS OR KNOWLEDGE THE WORKMEN HAVE ABOUT FORMING METHODS OR TECHNIQUES.

THE ENCLOSED LOAD TABLES CAN BE USED AS A GUIDE WHERE DATA PRESENTED IN LOAD TABLES ARE APPLICABLE. IF DATA IN LOAD TABLES ARE NOT APPLICABLE, THEN A SEPARATE CALCULATION MUST BE MADE TO MEET YOUR REQUIRED SPEC. ALL FORMING METHODS, HOWEVER, MUST COMPLY WITH AMICO’S PUBLISHED LOAD TABLES, OR SEPARATE CALCULATION.

on line: www.amico-online.com

ALABAMA METAL INDUSTRIES CORPORATION
3245 FAYETTE AVENUE • BIRMINGHAM, AL 35208

TECHNICAL SUPPORT
800/366-2642 ext. 205
FAX 205/786-6527

SALES DEPARTMENT
800/366-2642
TABLE OF CONTENTS

MISSION STATEMENT 2
STAY-FORM LOADING SPECIFICATIONS AND GUIDE LINES 3
STAY-FORM DIMENSIONS 4
FORMING FOOTINGS AND MAT SLABS 5
GRADE BEAM 6
GRADE BEAM 7
GRADE BEAM 8
GRADE BEAM 9
FLOOD WALL 10
REBAR PENETRATION OF BULKHEAD 11
WALL OR HEAVY MAT BULKHEAD / CONSTRUCTION JOINT WITH KEYWAY 12
WALL OR HEAVY MAT BULKHEAD / CONSTRUCTION JOINT WITH KEYWAY AND WATERSTOP 13
WALL OR HEAVY MAT BULKHEAD / CONSTRUCTION JOINT WITH WATERSTOP 14
WALL BULKHEAD / CONSTRUCTION JOINT WITH KEYWAY 15
WALL BULKHEAD / CONSTRUCTION JOINT WITH KEYWAY AND WATERSTOP 16
WALL BULKHEAD / CONSTRUCTION JOINT WITH WATERSTOP 17
BEAM KEYED CONSTRUCTION JOINT 18
WALL OR SLAB BULKHEAD / CONSTRUCTION JOINT WITH KEYWAY AND WATERSTOP 19
WALL OR SLAB BULKHEAD / CONSTRUCTION JOINT WITH KEYWAY 20
WALL OR SLAB BULKHEAD / CONSTRUCTION JOINT WITH KEYWAY AND WATERSTOP 21
SUSPENDED SLAB CONSTRUCTION JOINT 22
GRADE BEAM BOX-OUT IN PILE CAPS 23
PILE-CAP FORMWORK WITH BOX-OUTS 24
PAN JOIST CONSTRUCTION JOINT 25
REBAR STUD DESIGN TABLE FOR BLIND SIDE WALLS 26
STAY-FORM REBAR SIZING AND WIRE-TIE SPACING 27
BLIND SIDE WALL FORM USING STAY-FORM 28
HOOK TIE INSTALLATION FOR BLIND SIDE WALL APPLICATIONS 29
BOX BEAM CAVITIES 30
CONCRETE FOOTINGS 31
ON GRADE STEEP SLOPE SLAB 32
SLAB POCKET 33
UNDERWATER PILING REPAIR 34
BAR JOIST PLACEMENT AND FASTENING OF STAY-FORM 35
LAPING STAY-FORM AND FASTENER PLACEMENT DETAILS 36
STAY-FORM USED AS A BACKSTOP FOR SHOTCRETE IN TUNNEL APPLICATION 37

MISSION STATEMENT

“AMICO is committed to providing quality products and quality service with a quality attitude. We will continue to strive for improvements in order to reach our goal of complete customer satisfaction.”
GUIDE LINES FOR LOADING SPECIFICATIONS
Support Spacing (Running Perpendicular to Stay-Form Ribs)

<table>
<thead>
<tr>
<th>SUPPORT SPACING</th>
<th>30" ON CENTER</th>
<th>24" ON CENTER</th>
<th>16" ON CENTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stay-Form Type</td>
<td>#66</td>
<td>#77</td>
<td>#66</td>
</tr>
<tr>
<td>Lateral Loading (psf)</td>
<td>391</td>
<td>460</td>
<td>612</td>
</tr>
<tr>
<td>Liquid Head (feet)</td>
<td>2.6</td>
<td>3.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Pour Rate (feet / hour)</td>
<td>1.3</td>
<td>1.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Maximum Deflection (inches)</td>
<td>1.42</td>
<td>1.42</td>
<td>0.92</td>
</tr>
</tbody>
</table>

THE ABOVE LOADING SPECIFICATIONS ARE BASED ON THE FOLLOWING CONDITIONS:

1. Optimum density of wet concrete should be @ 150 lbs./ ft.³ and 50°F temperature.
2. Concrete discharge nozzle at no more than 2 feet above the pour surface.
3. Each rib saddle-tied at each support with 16 Ga. tie-wire in “figure 8” configuration.
4. End laps require at least 2’ of Stay-Form over lapping each other. Laps should occur over a support with both adjoining sheets secured with wire ties at the lap as well as over and around the support.
5. Side Laps require outside rib of each adjoining sheet be nested into the other and wire-tied at a maximum of 12” on center.
6. Place Stay-Form with ribs facing away from supports and projecting toward and into pour.
7. Concrete to be prepared with a 3” to 6” slump. Higher slump rates can be used but may result in some grout flow through the Stay-Form. Pour rates listed in the table above are without additives or retarders.
8. The data above is extrapolated from preliminary physical testing with 100% safety factor applied.
9. When side lapping sheets of Stay-Form, which may include less than full sheet widths, the Stay-Form is cut to allow side lapping of the ribs and is then wire-tied maintaining a maximum distance between ties of 12” on centers between supports if at all possible. (see Side Lap Detail below)
10. The loading guidelines listed above are based on a continuous span configuration.
11. CAUTION: When consolidating concrete, keep vibrator at least 4” away from Stay-Form. Be sure not to allow vibrator to come into physical contact with Stay-Form. When Stay-Form is used with conventional sheathing on opposite side for wall forming, use external form vibrator on conventional liner, if possible, for compaction. Otherwise, hand compact with grating tamper.
12. If Stay-Form is applied on wooden supports, fasten Stay-Form to supports with 14 ga. circular crown staples straddling each rib crossing each support driven deep enough to clinch the rib but not deep enough to deform the rib. Use two staples for each rib over an end lap and at the end supports.

STAPLE STRADDLING EACH RIB WITH 1” MIN. PENETRATION INTO WOOD

STAY-FORM WITH RIBS CROSSING SUPPORTS AT RIGHT ANGLES

WOODEN SUPPORTS SPACED ON CENTERS TO SUIT LOADING REFERENCE TABLE ABOVE

SIDE LAP DETAIL

LESS THAN A FULL WIDTH SHEET FULL WIDTH SHEET OF STAY-FORM

LAP WIRE-TIED A MAXIMUM OF 12” ON CENTER
DIMENSIONAL SPECIFICATIONS

STAY-FORM IS MANUFACTURED FROM HOT DIPPED GALVANIZED SHEET STEEL PER ASTM A-924 STEEL TO MEET ASTM A-653

STANDARD PACKAGING

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Packaging</th>
<th>Area (m²)</th>
<th>Weight (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Square Feet</td>
<td>1 Sheet</td>
<td>1.60</td>
<td>11.88</td>
</tr>
<tr>
<td>90 Square Feet</td>
<td>5 Sheets</td>
<td>8.37</td>
<td>59.50</td>
</tr>
<tr>
<td>4,500 Square Feet</td>
<td>250 Sheets</td>
<td>418.0</td>
<td>2,970</td>
</tr>
</tbody>
</table>

NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
FORMING FOOTINGS AND MAT SLABS WITH STAY-FORM

WOOD COLLAR FOR ABOVE GRADE FINISH.

ROD TIES Sized TO SUIT

VARIES CONSULT LOAD TABLE

VARIES, CONSULT LOAD TABLE

ROD CLAMPS SECURING TIES

WOOD STRONG-BACKS SPACED AND Sized TO SUIT LOAD

FOR CORNERS, NOTCH RIBS 3/8 INCH DEEP WITH "V" CONTOURED ROTARY CUT-OFF BLADE AND BEND 90°.

90°

WIRE-TIE ALL LAPS AND BACK WITH SUPPORTS

STRONG-BACK

NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
GRADE BEAMS WITH STAY-FORM FOR BACK-FILLING
BEFORE CONCRETE PLACEMENT

NOTE: See load table on page 3 for spacing and load information.
It is preferable to orientate ribs into first pour.
NOTE: See load table on page 3 for spacing and load information.
It is preferable to orientate ribs into first pour.
NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
FORMING PERIMETER GRADE BEAM WITH INTEGRAL (MONOLITHIC POUR) USING STAY-FORM

NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
FLOOD WALL USING STAY-FORM WITH EXPANDED METAL GRATING REINFORCEMENT

NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
REBAR PENETRATION OF BULKHEAD FORMING USING STAY-FORM

NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
FORMING WALL OR HEAVY MAT BULKHEAD / CONSTRUCTION JOINT USING STAY-FORM

NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
FORMING WALL OR HEAVY MAT BULKHEAD / CONSTRUCTION JOINT WITH KEYWAY & WATER STOP USING STAY-FORM

NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
FORMING WALL OR HEAVY MAT BULKHEAD / CONSTRUCTION JOINT USING STAY-FORM

NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
FORMING WALL OR HEAVY MAT BULKHEAD / CONSTRUCTION JOINT
WITH WATERSTOP USING STAY-FORM

NOTE: See load table on page 3 for spacing and load information.
It is preferable to orientate ribs into first pour.
FORMING WALL BULKHEAD / CONSTRUCTION JOINT WITH KEYWAY USING STAY-FORM

NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
FORMING WALL OR SLAB BULKHEAD / CONSTRUCTION JOINT
WITH OFFSET KEYWAY & WATERSTOP USING STAY-FORM

STAY-FORM SKIRT NOTCHED TO FIT AROUND REBAR

CONVENTIONAL FORM

REBAR

PENCIL ROD HAIR PIN WELDED TO CROSS ROD

#4 CROSS RODS TIED TO REBAR OR GANGED ON STRINGERS FOR REUSE AND "MULTI-SHOT" APPLICATIONS

FLEXIBLE WATER-STOP PRESS FITTED BETWEEN HAIR PINS

KEYWAY FORMED BY BENDING STAY-FORM AND HOLDING IN PLACE BY WIRE TYING TO HAIR PINS

STRINGERS FOR GANGING... WELDED TO CROSS RODS

COVER

CONVENTIONAL FORM

BLOCKING FOR COVER

NOTE: See load table on page 3 for spacing and load information.
It is preferable to orientate ribs into first pour.
NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
FORMING WALL OR SLAB BULKHEAD / CONSTRUCTION JOINT WITH KEYWAY & WATER STOP USING STAY-FORM

CONVENTIONAL FORM

WATER STOP FRICITION FIT BETWEEN PENCIL ROD WICKETS

REBAR

STAY-FORM WIRE-TIED TO TEMPLATE

TEMPLATE STRINGERS WIRE-TIED TO REBAR

BLOCKING FOR COVER

AFTER 1ST PLACEMENT, WIRE FOR STAY-FORM ATTACHMENT ARE CUT AND TEMPLATE IS REMOVED FOR REUSE.

REUSABLE PENCIL ROD IS WELDED TO #4 CROSSRODS WHICH, IN TURN ARE WELDED TO THE #4 STRINGERS TO FORM A TEMPLATE ON WHICH TO FORM A STAY-FORM WALL OR SLAB BULKHEAD.

NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
FORMING WALL OR SLAB BULKHEAD / CONSTRUCTION JOINT WITH KEYWAY USING STAY-FORM

CONVENTIONAL FORM

REBAR

TEMPLATE STRINGERS WIRE-TIED TO REBAR

BLOCKING FOR COVER

STAY-FORM WIRE-TIED TO TEMPLATE

REBAR

AFTER 1ST PLACEMENT, WIRES FOR STAY-FORM ATTACHMENT ARE CUT AND TEMPLATE IS REMOVED FOR REUSE

REUSABLE PENCIL ROD IS WELDED TO #4 CROSSRODS WHICH, IN TURN ARE WELDED TO THE #4 STRINGERS TO FORM A TEMPLATE ON WHICH TO FORM A STAY-FORM WALL OR SLAB BULKHEAD.

#4 STRINGERS

#4 CROSSRODS

NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
NOTE: See load table on page 3 for spacing and load information.
It is preferable to orientate ribs into first pour.
FORMING GRADE BEAM BOX-OUTS IN PILE CAPS USING STAY-FORM

NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
PILE CAP FORMWORK WITH BOX-OUTS USING STAY-FORM & REBAR

REBAR STUDS ARE WELDED TO TOP & BOTTOM STRINGERS FORMING THE GRIDWORK FOR SUPPORTING STAY-FORM

REBAR STUD SPACING & SIZE TO SUIT POUR PRESSURES

NOTE: WIRE TIE STAY-FORM TO SUPPORTING REBAR GRIDWORK NOT TO EXCEED 8” SPACING

NOTE: See load table on page 3 for spacing and load information.
It is preferable to orientate ribs into first pour.
NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
REBAR STUD DESIGN TABLES
FOR BLIND SIDE WALLS UTILIZING STAY-FORM

REBAR STUD SIZING, REBAR AND TIE SPACING FOR VARIOUS POUR PRESSURES

<table>
<thead>
<tr>
<th>REBAR STUD SPACING (IN)</th>
<th>#66 SF @ 30"</th>
<th>#66 SF @ 24"</th>
<th>#66SF @ 24"</th>
<th>#66 SF @ 24"</th>
<th>#66 SF @ 24"</th>
<th>#66SF @ 12"</th>
<th>#66 SF @ 24"</th>
</tr>
</thead>
<tbody>
<tr>
<td>POUR PRESSURE (PSF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>391</td>
<td>200</td>
<td>300</td>
<td>210</td>
<td>400</td>
<td>500</td>
<td>800</td>
<td>612</td>
</tr>
<tr>
<td>TIE SPACING ALONG REBAR LENGTH (IN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10⅞"</td>
<td>25"</td>
<td>16½"</td>
<td>12"</td>
<td>12½"</td>
<td>10"</td>
<td>12"</td>
<td>8-3/16"</td>
</tr>
<tr>
<td>REBAR STUD SIZE ACI DESIGNATION</td>
<td>#6's</td>
<td>#8's</td>
<td>#7's</td>
<td>#5's</td>
<td>#7's</td>
<td>#6's</td>
<td>#6's</td>
</tr>
</tbody>
</table>

REBAR STUD SPACING (IN)	#66 SF @ 16"	#66 SF @ 12"	#66 SF @ 16"	#77 SF @ 16"	#77SF @ 12"	#77 SF @ 16"	#77 SF @ 16"	#77 SF @ 16"								
POUR PRESSURE (PSF)																
200	500	800	1000	1200	1360	1600	1600	470								
TIE SPACING ALONG REBAR LENGTH (IN)																
15⅞"	15⅞"	9-7/8"	7½"	6½"	5½"	4½"	6½"	16"								
REBAR STUD SIZE ACI DESIGNATION	#5's	#7's	#6's	#7's	#5's	#5's	#5's	#5's								

NOTE: THE ABOVE VALUES ARE BASED ON 0.221” DIAMETER TIES WITH AN ALLOWABLE TENSILE STRENGTH OF 22 KSI.

NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
REBAR STUD SIZING, REBAR AND TIE SPACING FOR VARIOUS POUR PRESURES

LOAD SPECIFICATIONS ON PAGE 26 ARE BASED ON THE FOLLOWING CRITERIA:

1. THE DENSITY OF WET CONCRETE @ 150 LBS/FT³ AND 50°F TEMPERATURE.
2. CONCRETE DISCHARGE NOZZLE SHOULD NOT BE MORE THAN 2 FEET ABOVE POUR SURFACE.
3. ADJOINING SHEET END LAPS OF NO LESS THAN 2" WITH LAPS TO OCCUR OVER A SUPPORT WITH BOTH ADJOINING SHEETS SECURED WITH WIRE TIES AT THE LAP AND OVER AND AROUND THE SUPPORT.
4. PLACE STAY-FORM WITH RIBS FACING AWAY FROM THE SUPPORTS AND PROTRUDING TOWARD AND INTO THE POUR.
5. SIDE LAPS, (LONG DIMENSION OF SHEET), OUTSIDE RIB OF EACH ADJOINING SHEET TO BE NESTED INTO OTHER AND EACH WIRE TIED AT 12" O.C., MAXIMUM.
6. FOR BLIND SIDE WALL APPLICATIONS, LAP TWO RIBS ON THE FIRST TWO LAPS FOR ADDED STRENGTH AND WIRE TIE BOTH RIBS ON 12 INCH CENTERS.
7. CONCRETE TO BE PREPARED TO 3” TO 5” SLUMP. POUR RATES FOR THE ABOVE TABLES ARE WITHOUT THE ADDITION OF ADDITIVES OR RETARDANTS. HIGHER SLUMP RATES CAN BE UTILIZED THOUGH A HIGHER RATE OF GROUT FLOW THROUGH THE STAY-FORM MAY RESULT.
8. LOAD TABLES ARE BASED ON CONTINUOUS SPAN CONFIGURATION.
9. ALL SHEETS OF STAY-FORM SHALL BE ATTACHED WITH THE RIBS RUNNING PERPENDICULAR TO THE REBAR STUDS.
10. A #4 REBAR SHOLD BE INSERTED CONTINUOUSLY INTO THE BOTTOM RIB OF THE STAY-FORM AND WIRE TIE IN PLACE TO GIVE ADDED SUPPORT TO THE BOTTOM OF THE POUR.
11. A REBAR STUB MUST BE PLACED IN THE FOOTING OR SLAB TO CORRESPOND WITH EACH REBAR STUD. THE REBAR STUDS SHOULD BE WELDED TO THE PROTRUDING STUB IN ORDER TO KEEP THE BOTTOM OF THE WALL FROM SHIFTING DURING THE POUR.

NOTE: USE ACI FORMULAS TO CONVERT TOTAL PRESSURES TO HOURLY POUR RATES. SEE STAY-FORM GUIDELINE LOADING SPECIFICATIONS FOR SPECIFIC APPLICATIONS ON PAGE 3.
BLIND SIDE WALL FORM USING STAY-FORM

NOTE: SEE BLIND SIDE WALL LOAD TABLE ON PAGE 26 FOR LOAD & SPACING INFORMATION
HOOK TIE INSTALLATION FOR BLIND SIDE WALL APPLICATIONS USING STAY-FORM

NOTE: AFTER HOOK TIE HAS BEEN INSERTED THROUGH THE SLIT IN THE STAY-FORM AND ENGAGES THE REBAR STUD, A CHAIN LINK KEEPER IS THEN SECURED WITH A 1½” O.D. WASHER AND HEX NUT.

EXAMPLE USING #6 REBAR
NOTE: IN CALCULATING HOOK LENGTH
\[0.250 + 0.4375 + 0.250 + 0.0625 + 0.375 + \left(3.14 \times \frac{0.375 + 0.0625}{2} \right) \]
\[+ 0.375 + 0.0625 = 3.34 \text{say } 3\frac{1}{2} \]

NOTE: CONTACT THE AMICO STAY-FORM DEPARTMENT IN BIRMINGHAM FOR A LIST OF HOOK TIE SUPPLIERS.
BOX BEAM CAVITIES WITH STAY-FORM

NOTE: See load table on page 3 for spacing and load information.
It is preferable to orientate ribs into first pour.
FORMING 5 FOOT DIAMETER x 8 FOOT DEEP CONCRETE FOOTING WITH ONE POUR USING STAY-FORM

STAY-FORM IS PRODUCED IN 8' LENGTHS. STAY-FORM IS THEN PLACED UPRIGHT, AND WIRE-TIED TO ROLLED REBAR RIBS (HOOPS) WITH 14 GA. WIRE EVERY 8" ON CENTER. SEE THE STAY-FROM GUIDELINE LOADING SPECIFICATIONS ON PAGE 3.
ON GRADE STEEP SLOPED SLAB USING STAY-FORM

NOTE: See load table on page 3 for spacing and load information.

NOTE: Steep slope slabs may be used in ground stabilization applications using shotcrete and Stay-Form with minor variations in design.

NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
FORMING SLAB POCKET WITH STAY-FORM

NOTE: See load table on page 3 for spacing and load information. It is preferable to orientate ribs into first pour.
UNDER WATER PILING REPAIR WITH STAY-FORM

1/8" x 1" STRAPS FORMED TO FIT THE DIAMETER OF THE PILING, THEN WIRE-TIED TO THE STAY-FORM

HALF OF STAY-FORM SLEEVE

CENTERING STRAPS WIRE-TIED TO PILING

WIRE STRAPS

1/8" x 1" CENTERING STRAPS, 4 EACH

STAY-FORM SLEEVE HALVES BOLTED TOGETHER

1/8" x 1" STRAPS (SEE SLEEVE HALF DETAIL ABOVE)

SUITABLE HOT ROLLED ANGLE ROLL-FORMED TO FIT PILING DIAMETER

BUCKLE PLATES WELDED TO ANGLE

CLAMP COLLAR HALF

NOTE: CLAMP COLLAR HALVES RECLAIMABLE EVERYTHING ELSE IS LEFT IN PLACE.

NOTE: See load table on page 3 for spacing and load information.
It is preferable to orientate ribs into first pour.
BAR JOIST PLACEMENT & FASTENING OF STAY-FORM
CENTERING STAY-FORM OVER JOISTS IN HORIZONTAL APPLICATIONS

WHEN A STAY-FORM SHEET ENDS SLIP ADJOINING SHEET UNDER CENTER LINE BY 1/2 JOIN SHEET AT THE OTHER END.

OVERLAP JAWS FROM COURSE TO COURSE.

OVERLAP END OF SHEET 6".

FASTENING WITH WASHERS AT THE 2 LOCATIONS PER SHEET AS SHOWN.

8 FOOT

12" RIB

5TH RIB

4TH RIB

8TH RIB

BAR JOIST

BAR JOIST @ 1 FOOT CENTER

6" OVERLAP
LAPING STAY-FORM AND FASTENER DETAILS

NOTES:
APPROVED FASTENER -
POWER DRIVEN #10 SHANK x 1¼" HEX
HEAD, SELF-DRILLING, SELF-TAPPING
SCREW, CADMIUM PLATED WITH 1½" O.D., 16
GA. WASHER.

WHEN LOCATING FASTENER, PLACE
SCREW AS CLOSE TO THE NEAREST RIB AS
POSSIBLE.

WHEN PLACING WET CONCRETE OVER
STAY-FORM DECKING, DISTRIBUTE CON-
CRETE WEIGHT UNIFORMLY WITH TRUNK
HOSING AND ALSO PROVIDE TEMPORARY
PLYWOOD WALKWAYS TO FACILITATE
WORKER MOBILITY.

ALTERNATE FASTENING BY PLUG WELDING
THRU WASHER INTO TOP CHORD

NOTE: See load table on page 3 for spacing and load information.
It is preferable to orientate ribs into first pour.
STAY-FORM USED AS A BACKSTOP FOR SHOTCRETE IN TUNNEL APPLICATION

TYPICAL CANOPY CROSS SECTION

STAY-FORM USED AS SHOTCRETE BACKSTOP

LATICE GIRDER AND END PLATE
DETAIL 1

STEEL PLATE

LATICE GIRDER

REBAR

STAY-FORM ATTACHED TO REBAR WITH TIE-WIRE
SECTION A - A